Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.356
Filtrar
1.
Cureus ; 16(3): e56840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38654783

RESUMO

A rare human pathogen, Serratia fonticola (S. fonticola) has previously been found to cause skin and soft tissue infections post-trauma. The literature contains limited information regarding its management or sensitivity patterns. We aim to share our findings on S. fonticola infections in an area with a high rate of antibiotic resistance. To draw attention to this uncommon and rare infection, we share a case series of S. fonticola. The antibiogram revealed that S. fonticola in all our cases was multidrug resistant. Two of our five cases had a prior history of road traffic accidents and yielded polymicrobial infections along with S. fonticola. The other two were revived successfully with proper antibiotic treatment, though one had glucose-6-phosphate deficiency (G6PD) and the last one was a neonate with pulmonary hypertension who grew S. fonticola in blood culture.

2.
Front Cell Infect Microbiol ; 14: 1289396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655285

RESUMO

The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.


Assuntos
Antibacterianos , Enterobacteriaceae , Tigeciclina , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Humanos , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética , Minociclina/análogos & derivados , Minociclina/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia
3.
Cureus ; 16(3): e56632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646249

RESUMO

Introduction In general, with frequent recurrence of urinary tract infections (UTIs), long-term antibiotic therapy is stipulated at a low dose. With this type of situation and with easy access to several classes of antibiotics in tertiary health care settings, the use of such drugs results in the development of resistant bacteria in patients. Escherichia coli is a frequent cause of UTI observed. Hence, it was proposed in the present study to assess the antimicrobial resistance status of E. coli in UTI-infected patients. Methods This study was conducted among female patients diagnosed with UTI. About 80 urine samples were collected in an aseptic condition, Under the process of culture identification 44 samples were found to be positive for UTI infection. The positive samples were plated on blood agar. Out of 44 samples, 18 samples were found to be positive, and 26 samples were negative for E. coli infection. The 18 samples were screened on MALDI-TOF for identification. Further, the samples were assessed for susceptibility to antibiotic medication within the study area. Result The study identified different strains of E. coli, and the CHB gene E. coli was found in eight samples. The sample showed pink oval-round spots in the culture medium and was resistant to nitrofurantoin, cephalosporin, and cephalexin antibiotics. Hence, antimicrobial susceptibility tests are necessary for managing and treating bacterial E. coli infections. Conclusion E. coli is a common bacterium found in the vaginal region of patients, suggesting a potential infection. E. coli can be associated with UTIs in women. The results from this study conclude that E. coli is rapidly becoming multidrug-resistant, as only higher antibiotics can inhibit its growth. To effectively manage infections caused by E. coli proper diagnosis, laboratory testing, and antibiotic treatment are required.

4.
Sci Rep ; 14(1): 9259, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649719

RESUMO

Chemotherapy resistance poses clinical challenges in pancreatic cancer treatment. Developing cell lines resistant to chemotherapy is crucial for investigating drug resistance mechanisms and identifying alternative treatment pathways. The genetic and biological attributes of pancreatic cancer depend on its aetiology, racial demographics and anatomical origin, underscoring the need for models that comprehensively represent these characteristics. Here, we introduce PDAC-X2, a pancreatic cancer cell line derived from Chinese patients. We conducted a comprehensive analysis encompassing the immune phenotype, biology, genetics, molecular characteristics and tumorigenicity of the cell line. PDAC-X2 cells displayed epithelial morphology and expressed cell markers (CK7 and CK19) alongside other markers (E-cadherin, Vimentin, Ki-67, CEA and CA19-9). The population doubling time averaged around 69 h. In vivo, PDAC-X2 cells consistently maintained their tumorigenicity, achieving a 100% tumour formation rate. Characterised by a predominantly tetraploid karyotype, this cell line exhibited a complex genetic markup. Notably, PDAC-X2 cells demonstrated resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil and oxaliplatin. In conclusion, PDAC-X2 presents an invaluable preclinical model. Its utility lies in facilitating the study of drug resistance mechanisms and the exploration of alternative therapeutic approaches aimed at enhancing the prognosis of this tumour type.

5.
Cureus ; 16(3): e56760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38650815

RESUMO

INTRODUCTION: In recent years, antimicrobial drug resistance has emerged as a serious global public health concern, according to the World Health Organization data. The emergence of pathogens resistant to multiple drugs has been linked to an increase in morbidity and mortality from microbial infections. The study's main goal is to explore the efficacy of using Solanum xanthocarpum in the green synthesis of molybdenum nanoparticles (Mo NPs) for antibacterial and antioxidant properties. METHODS: An eco-friendly method of synthesizing Mo NPs was accomplished using an aqueous extract of Solanum xanthocarpum. Characterization of the synthesized nanoparticles was done by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). After that, antibacterial and antioxidant activity was further evaluated. RESULTS: The UV-visible spectrophotometer analysis confirmed the presence of synthesized Mo NPs showing a peak around 320 nm. The presence of functional compounds like C-CI, C-H, C=C, and O=C=O was confirmed by FT-IR spectrum analysis. The positions of diffraction peaks in Mo NP patterns were identified using XRD analysis; they were more crystalline (82.7%) and less amorphous (17.3%). The presence of the elements molybdenum (Mo), carbon (C), and oxygen (O) was confirmed by the EDX spectrum and irregular shapes shown in the SEM images. Further, the antimicrobial study results showed the formation of an inhibition zone against 27 mm for Klebsiella pneumoniae, 24 mm for Pseudomonas aeruginosa, 22 mm for Staphylococcus aureus, and 24 mm for Enterococcus faecalis, respectively, at a high concentration 80 µg/ml of Mo NPs. The maximum antioxidant activity at 100 µg/ml was 73.49%, compared to the standard ascorbic acid (74.25%). Additionally, the moderate activity at 60 µg/ml was 53.21%, compared to the standard (56.5%), and the minimal activity at 20 µg/ml was 30.21%, compared to the standard (36.89%). CONCLUSION: The environmentally friendly synthesized Mo NPs from Solanum xanthocarpum exhibited antioxidant activity. Furthermore, the findings show that Mo NPs mediated by Solanum xanthocarpum can inhibit antibiotic-resistant bacteria, especially methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis. In order to understand further how nanoparticles work against bacteria that are resistant to many drugs, additional research and clinical studies would be needed.

6.
Antibiotics (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666984

RESUMO

D-Cycloserine (DCS) is a broad-spectrum antibiotic that is currently FDA-approved to treat tuberculosis (TB) disease and urinary tract infection (UTI). Despite numerous reports showing good clinical efficacy, DCS fell out of favor as a UTI treatment because of its propensity to cause side effects. NRX-101, a fixed-dose combination of DCS and lurasidone, has been awarded Qualified Infectious Disease Product and Fast Track Designation by the FDA. In this study, we tested NRX-101 against the urinary tract pathogens Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii in cation-adjusted Mueller-Hinton broth (caMHB) and artificial urine media (AUM). Several strains were multidrug resistant. Test compounds were serially diluted in broth/media. Minimum inhibitory concentration (MIC) was defined as the lowest concentration of the test compound at which no bacterial growth was observed. DCS exhibited antibacterial efficacy against all strains tested while lurasidone did not appreciably affect the antibacterial action of DCS in vitro. In AUM, the MICs ranged from 128 to 512 mcg/mL for both DCS and NRX-101. In caMHB, MICs ranged from 8 to 1024 mcg/mL for NRX-101 and 32 to 512 mcg/mL for DCS alone. Our data confirm that DCS has antibacterial activity against reference and drug-resistant urinary pathogens. Furthermore, lurasidone does not interfere with DCS's antimicrobial action in vitro. These results support the clinical development of NRX-101 as a treatment for complicated urinary tract infections.

7.
Antibiotics (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666990

RESUMO

Salmonella enterica subspecies enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium which has emerged as a world-wide distributed pathogen in the last decades. Several clones have been identified within this variant, the European clone, the Spanish clone, the Southern European clone and the U.S./American clone. The present study focused on isolates of the Southern European clone that were obtained from clinical samples at Spanish hospitals. The selected isolates were multidrug resistant, with most resistance genes residing on IncR plasmids that also carried virulence genes. These plasmids had a mosaic structure, comprising a highly reduced IncR backbone, which has acquired a large amount of exogenous DNA mostly derived from pSLT and IncI1-I(alfa) plasmids. Although composed of approximately the same elements, the investigated plasmids displayed a high diversity, consistent with active evolution driven by a wealth of mobile genetic elements. They comprise multiple intact or truncated insertion sequences, transposons, pseudo-compound transposons and integrons. Particularly relevant was the role of IS26 (with six to nine copies per plasmid) in generating insertions, deletions and inversions, with many of the rearrangements uncovered by tracking the patterns of eight bp target site duplications. Most of the resistance genes detected in the analyzed isolates have been previously associated with the Southern European clone. However, erm(B), lnu(G) and blaTEM-1B are novel, with the last two carried by a second resistance plasmid found in one of the IncR-positive isolates. Thus, evolution of resistance in the Southern European clone is not only mediated by diversification of the IncR plasmids, but also through acquisition of additional plasmids. All isolates investigated in the present study have the large deletion affecting the fljBA region previously found to justify the monophasic phenotype in the Southern European and U.S./American clones. An SNP-based phylogenetic analysis revealed the close relationship amongst our isolates, and support that those sharing the large fljBA deletion could be more heterogeneous than previously anticipated.

8.
Antibiotics (Basel) ; 13(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38666996

RESUMO

Antimicrobial resistance is a global healthcare threat with significant clinical and economic consequences peaking at secondary and tertiary care hospitals where multidrug-resistant Gram-negative bacteria (MDR GNB) lead to poor outcomes. A prospective study was conducted between January and December 2019 for all invasive bloodstream infections (BSIs) secondary to MDR GNB in Qatar identified during routine microbiological service to examine their clinical, microbiological, and genomic characteristics. Out of 3238 episodes of GNB BSIs, the prevalence of MDR GNB was 13% (429/3238). The predominant MDR pathogens were Escherichia coli (62.7%), Klebsiella pneumoniae (20.4%), Salmonella species (6.6%), and Pseudomonas aeruginosa (5.3%), while out of 245 clinically evaluated patients, the majority were adult males, with the elderly constituting almost one-third of the cohort and with highest observed risk for prolonged hospital stays. The risk factors identified included multiple comorbidities, recent healthcare contact, previous antimicrobial therapy, and admission to critical care. The in-hospital mortality rate was recorded at 25.7%, associated with multiple comorbidities, admission to critical care, and the acquisition of MDR Pseudomonas aeruginosa. Resistant pathogens demonstrated high levels of antimicrobial resistance but noticeable susceptibility to amikacin and carbapenems. Genomic analysis revealed that Escherichia coli ST131 and Salmonella enterica ST1 were the predominant clones not observed with other pathogens.

9.
Antibiotics (Basel) ; 13(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38666999

RESUMO

The spread of antibiotic resistance represents a serious worldwide public health issue, underscoring the importance of epidemiology research in determining antimicrobial strategies. The purpose of this research was to investigate antibiotic resistance in Serratia marcescens isolates from clinical samples over seven years at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno, Italy. S. marcescens is an important opportunistic pathogen associated with a wide spectrum of clinical diseases, including pneumonia, keratitis, meningitis, and urinary tract and wound infections. Outbreaks of nosocomial infections by S. marcescens strains have been documented in high-risk settings, mainly affecting immunocompromised patients and newborns. The primary objective of this study is to assess the rates of antibiotic resistance over the years to deal with a future emergency which includes the failure of various therapies due to antibiotic resistance. During the investigation, a total of 396 species of S. marcescens were isolated from various clinical samples, mainly from broncho-aspirates and sputum (31.6%) and blood cultures (21.5%). Antibiotics that showed the greatest susceptibility included ceftazidime/avibactam, amikacin, trimethoprim/sulfamethoxazole, and selected members of the cephalosporin class. However, a disconcerting trend of increasing rates of carbapenem resistance was outlined over the observation period. The absence of effective countermeasures, combined with growing antibiotic resistance that negates the effectiveness of multiple antibiotics, highlights the potential for S. marcescens infections to trigger serious clinical complications and increased mortality rates. The surveillance of Serratia marcescens infections constitutes a pivotal element in refining empiric therapy to mitigate the dissemination of antimicrobial resistance.

10.
Antibiotics (Basel) ; 13(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667052

RESUMO

Escherichia coli, including extended-spectrum ß-lactamases (ESBL)-producing strains, poses a global health threat due to multidrug resistance, compromising food safety and environmental integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial agents compared to other food-producing animals. The European Union is facing challenges in rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity, and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit farming industry. Resistance to critically antibiotics was observed, with high levels of resistance to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9), followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10 clones exhibiting significant resistance to various categories of antibiotics and harboring different resistance genes were detected. ST457 and ST2325 were important sequence types due to their association with ESBL-E. coli isolates and have been widely distributed in a variety of environments and host species. The strains evaluated showed a high capacity for biofilm formation, which varied when they were grouped by the number of classes of antibiotics to which they showed resistance (i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit farming through interdisciplinary collaboration of human, animal, and environmental health. Our findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming emphasizes the urgent need to establish active surveillance systems.

11.
J Fungi (Basel) ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667931

RESUMO

The necrotrophic pathogen Botrytis cinerea infects a broad range of plant hosts and causes substantial economic losses to many crops. Although resistance to procymidone has been observed in the field, it remains uncertain why procymidone is usually involved in multidrug resistance (MDR) together with other fungicides. Nine mutants derived from the B. cinerea strain B05.10 through procymidone domestication exhibited high resistance factors (RFs) against both procymidone and fludioxonil. However, the fitness of the mutants was reduced compared to their parental strain, showing non-sporulation and moderate virulence. Furthermore, the RFs of these mutants to other fungicides, such as azoxystrobin, fluazinam, difenoconazole, and pyrimethanil, ranged from 10 to 151, indicating the occurrence of MDR. Transcriptive expression analysis using the quantitative polymerase chain reaction (qPCR) revealed that the mutants overexpressed ABC transporter genes, ranging from 2 to 93.7-fold. These mutants carried single-point mutations W647X, R96X, and Q751X within BcBos1 by DNA sequencing. These alterations in BcBos1 conferred resistance to procymidone and other fungicides in the mutants. Molecular docking analysis suggested distinct interactions between procymidone and Bos1 in the B. cinerea standard strain B05.10 or the resistant mutants, suggesting a higher affinity of the former towards binding with the fungicide. This study provides a comprehensive understanding of the biological characteristics of the resistant mutants and conducts an initial investigation into its fungicide resistance traits, providing a reference for understanding the causes of multidrug resistance of B. cinerea in the field.

12.
Vet Sci ; 11(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668447

RESUMO

The spread of antibiotic-resistant Enterococcus in the poultry industry poses significant public health challenges due to multidrug resistance and biofilm formation. We investigated the antibiotic resistance profiles and biofilm characteristics of E. faecalis and E. faecium isolates from chicken meat in poultry slaughterhouses in South Korea. Ninety-six isolates (forty-eight each of E. faecalis and E. faecium) were collected between March and September 2022. Both species were analyzed using MALDI-TOF, PCR, antibiotic susceptibility testing, and biofilm assays. A high level of multidrug resistance was observed in E. faecalis (95.8%) and E. faecium (93.8%), with E. faecium exhibiting a broader range of resistance, particularly to linezolid (52.1%) and rifampicin (47.9%). All E. faecalis isolates formed biofilm in vitro, showing stronger biofilm formation than E. faecium with a significant difference (p < 0.001) in biofilm strength. Specific genes (cob, ccf, and sprE) were found to be correlated with biofilm strength. In E. faecium isolates, biofilm strength was correlated with resistance to linezolid and rifampicin, while a general correlation between antibiotic resistance and biofilm strength was not established. Through analysis, correlations were noted between antibiotics within the same class, while no general trends were evident in other analyzed factors. This study highlights the public health risks posed by multidrug-resistant enterococci collected from poultry slaughterhouses, emphasizing the complexity of the biofilm-resistance relationship and the need for enhanced control measures.

13.
Epigenomics ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639712

RESUMO

Triple-negative breast cancer (TNBC) has negative expressions of ER, PR and HER2. Due to the insensitivity to both endocrine therapy and HER2-targeted therapy, the main treatment method for TNBC is cytotoxic chemotherapy. However, the curative effect of chemotherapy is limited because of the existence of acquired or intrinsic multidrug resistance. MicroRNAs (miRNAs) are frequently dysregulated in malignant tumors and involved in tumor occurrence and progression. Interestingly, growing studies show that miRNAs are involved in chemoresistance in TNBC. Thus, targeting dysregulated miRNAs could be a plausible way for better treatment of TNBC. Here, we present the updated knowledge of miRNAs associated with chemoresistance in TNBC, which may be helpful for the early diagnosis, prognosis and treatment of this life-threatening disease.


Triple-negative breast cancer (TNBC) is a subtype of breast cancer, which is characterized by high rates of invasion, recurrence and distant metastasis. At present, chemotherapy is still the main treatment option for TNBC. However, after some time, the sensitivity of tumor cells to chemotherapeutic drugs gradually decreases, which makes tumor cells develop chemoresistance. MicroRNAs (miRNAs) are a class of small RNA molecules with length of 19­25 nucleotides that do not encode proteins. The expression level of miRNAs in cancer is usually abnormal. More and more studies have shown that miRNAs are involved in cancer development and associated with drug resistance. Therefore, this review summarizes the miRNAs associated with chemoresistance in TNBC.

14.
Front Microbiol ; 15: 1357794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646631

RESUMO

The anthocyanin compound cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis by E. coli is a promising alternative to the traditional extraction methods. However, part of the synthesized C3G accumulates in the cytoplasm, thus potentially causing growth inhibition and product degradation. Therefore, it is necessary to enhance C3G secretion via exploration of native transporters facilitating C3G export. In this study, we report the screening and verification of native multidrug resistance transporters from 40 candidates in E. coli that can improve the extracellular C3G production when using catechin as the substrate. Overexpression of single transporter genes including fsr, yebQ, ynfM, mdlAB, and emrKY were found to increase C3G production by 0.5- to 4.8-fold. Genetic studies indicated that mdlAB and emrKY are vital transporters in the secretion of C3G. Our study reveals a set of new multidrug resistance transporters for the improvement of microbial biosynthesis of C3G and other anthocyanins.

15.
Int J Biol Macromol ; 267(Pt 2): 131327, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574903

RESUMO

The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.

16.
Future Med Chem ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573062

RESUMO

Aim: BCRP plays a major role in the efflux of cytotoxic molecules, limiting their antiproliferative activity. We aimed to design and synthesize new BCRP inhibitors to render cancerous tumors more sensitive toward anticancer agents. Materials & methods: Based on our previous work, we conceived potential BCRP inhibitors derived from 1,3,4-oxadiazoles bearing two substituted phenyl rings. Results: Evaluating 19 derivatives, we found that 2,5-diaryl-1,3,4-oxadiazoles possessing methoxy groups were the most active. The highest activity was recorded with derivatives bearing three methoxy groups. The most active compound (3j) was selective in inhibiting BCRP and nontoxic as evidenced by cellular tests. Conclusion: 3j is a promising BCRP inhibitor thanks to its synthetic accessibility and biological profile.

17.
Front Cell Infect Microbiol ; 14: 1361045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572320

RESUMO

Introduction: Over the past decade, Corynebacterium striatum (C. striatum), an emerging multidrug-resistant (MDR) pathogen, has significantly challenged healthcare settings, especially those involving individuals with weakened immune systems. The rise of these superbugs necessitates innovative solutions. Methods: This study aimed to isolate and characterize bacteriophages targeting MDR-C. striatum. Utilizing 54 MDR-C. striatum isolates from a local hospital as target strains, samples were collected from restroom puddles for phage screening. Dot Plaque and Double-layer plate Assays were employed for screening. Results: A novel temperate bacteriophage, named CSP1, was identified through a series of procedures, including purification, genome extraction, sequencing, and one-step growth curves. CSP1 possesses a 39,752 base pair circular double-stranded DNA genome with HK97-like structural proteins and potential for site-specific recombination. It represents a new species within the unclassified Caudoviricetes class, as supported by transmission electron microscopy, genomic evolutionary analysis, and collinearity studies. Notably, CSP1 infected and lysed 21 clinical MDR-C. striatum isolates, demonstrating a wide host range. The phage remained stable in conditions ranging from -40 to 55°C, pH 4 to 12, and in 0.9% NaCl buffer, showing no cytotoxicity. Discussion: The identification of CSP1 as the first phage targeting clinical C. striatum strains opens new possibilities in bacteriophage therapy research, and the development of diagnostic and therapeutic tools against pathogenic bacteria.


Assuntos
Bacteriófagos , Infecções por Corynebacterium , Humanos , Bacteriófagos/genética , Corynebacterium/genética , Infecções por Corynebacterium/microbiologia , Genômica , Antibacterianos
18.
Front Pharmacol ; 15: 1348076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572428

RESUMO

Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.

19.
Foodborne Pathog Dis ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563794

RESUMO

The rapid emergence of antimicrobial resistance (AMR) in Campylobacter has reinforced its status as a foodborne pathogen of significant public health concern. Resistant Campylobacter is typically transferred to humans via the consumption of contaminated animal products, particularly poultry. The genes associated with antimicrobial resistance in Campylobacter spp. are poorly understood. To address this knowledge gap, we conducted a prevalence survey of AMR Campylobacter across 84 chicken farms in two districts of Bangladesh. Pooled cloacal swabs were collected from chickens and underwent bacteriological testing for Campylobacter spp. with PCR confirmation. Antimicrobial susceptibility was tested against 14 antibiotics by disk diffusion method, and 12 resistance genes were screened in Campylobacter-positive isolates using multiplex PCR. A total of 34 (40.5%) farms were Campylobacter-positive of which 73.5% of isolates were resistant to at least 10 antibiotics. The antimicrobial susceptibility results indicate a high level of resistance against streptomycin (97.1%), clindamycin (97.1%), ampicillin (94.1%), tetracycline (94.1%), erythromycin (91.2%), ciprofloxacin (88.2%), nalidixic acid (85.3%), and imipenem (82.4%), and comparatively a low frequency of resistance to chloramphenicol (47.1%), ceftazidime (44.1%), and colistin (35.3%). Multidrug-resistant (MDR) and extensively drug-resistant Campylobacter were identified in 97.1%, and 50% of isolates, respectively. Ten resistance genes were identified including blaTEM (in 97.1% of isolates), strA-strB (85.9%), tetA (70.6%), tetB (32.4%), qnrS (23.5%), blaCTX-M-1 (20.6%), qnrB (20.6%), blaSHV (8.8%), aadB (5.9%), and qnrA (2.9%). Our findings demonstrate that resistance to ampicillin, tetracycline, and ceftazidime in Campylobacter isolates was significantly (p ≤ 0.05) associated with the presence of blaTEM, tetA, and blaSHV genes, respectively. The high rates of AMR in Campylobacter isolates from our study are not surprising given the liberal use of antimicrobials and incomplete biosecurity provisions on farms. Of particular concern are resistance rates to those classes of antibiotics that should be reserved for human use (azithromycin, ciprofloxacin, and colistin). AMR was more prevalent in chicken farms that used multiple antibiotics, engaged in prophylactic treatment of the birds, and improperly disposed of antibiotic packages. The high prevalence of MDR in chicken-derived Campylobacter isolates from the different regions of our study reinforces the need for more prudent use of antimicrobial compounds in Bangladeshi chicken farms.

20.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557176

RESUMO

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...